Functional Classification and Quantitative Analysis of Smart Connected Home Devices

Joseph Bugeja

Paul Davidsson

Andreas Jacobsson

AGENDA

1	Introduction
2	Related Work
3	Research Methodology
4	Results
5	Closing Remarks & Future Work

THE INTERNET OF THINGS

- In 2017, there was an estimated 8.4 billion IoT devices
- Recent surveys estimate the number of IoT devices to exceed 20 billion by 2020
- Consumer applications, e.g., the smart connected home, represent the largest user base

THE SMART CONNECTED HOME

• These devices – alongside the infrastructure supporting them – enable the smart connected home

SMART CONNECTED HOME DEVICES

What are the challenges and motivations of this study?

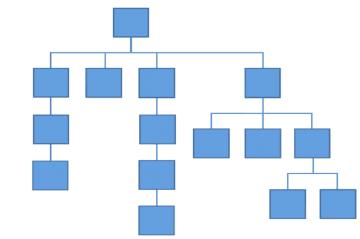
• The introduction of numerous and heterogenous devices, including multiple disciplines, complicates the efforts to understanding the smart home environment

• Such understanding is needed, e.g., to build a more robust, secure, and resilient smart home

RESEARCH OBJECTIVES

What are the main research objectives of this study?

• Organize the smart home devices in a logical and coherent manner

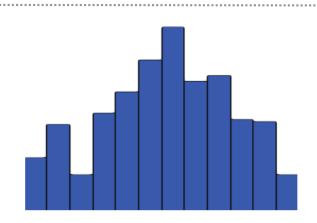

Provide homogeneity and order within the existing diversity

• Perform a quantitative analysis of these devices in terms of their functionality and capabilities

Identify areas that are growing in adoption rate, new trends, topics, etc.

RESEARCH OBJECTIVES

What are the main research objectives of this study?



• Organize the smart home devices in a logical and coherent manner

2 DESCRIPTIVE STATISTICS

HIERARCHICAL

TAXONOMY

• Identify areas that are growing in adoption rate, new trends, topics, etc.

RELATED WORK

What is the existing work related to IoT and smart home devices classification?

Functionality
 E.g., ITU classification

Data-carrying device Data-capturing device Sensing/actuating device General device

•	Data > E.g., Imagination Technologies Limited	M2M data Audio Audio/Video
	Resources > E.g., RFC 7228	Class 0 Class 1 Class 2
٠	Interaction > E.g., Moawad et al.	Level O Level 1 Level 2 Level 3

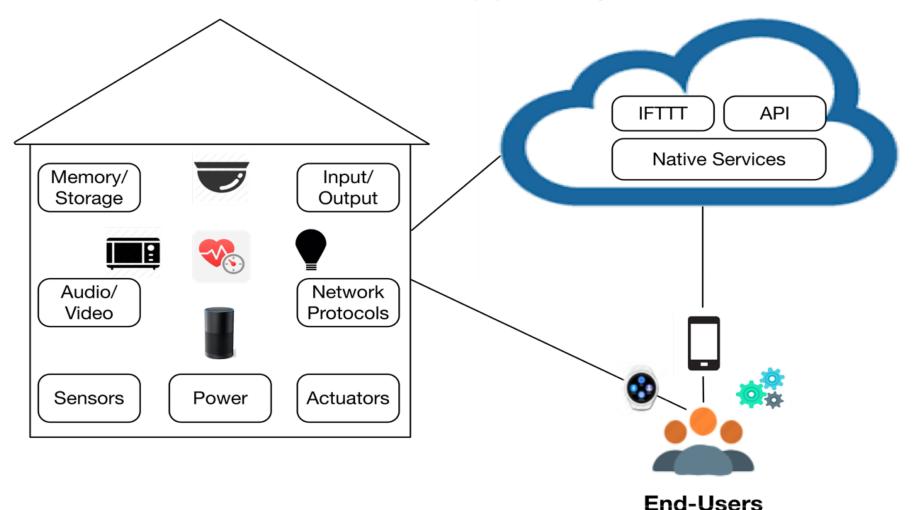
MAIN OBSERVATIONS

What are the main observations drawn from reviewing the existing work?

Conceptual models

Ignore complexity and heterogeneity of actual setups

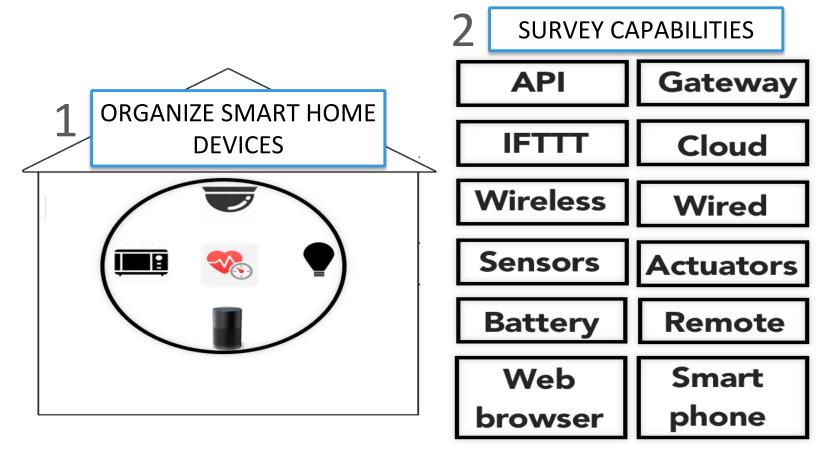
Machine-oriented classifications
 Not mainly intended for the human as the analyst/operator


Functionality and capabilities
 Mostly theoretical and capabilities are often not identified and/or measured

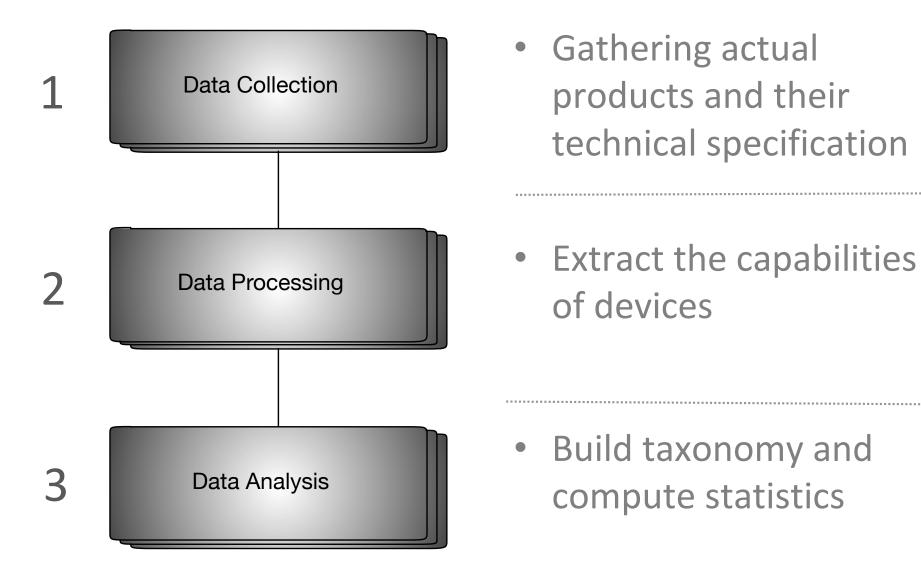
• In our proposal we address the above issues

SMART CONNECTED HOME SETUP

What makes up a typical smart home setup?


• A typical smart home setup consists of devices, services, end-users, and supporting infrastructure

RESEARCH AIMS


What are the main research aims?

• Effectively we want to:

RESEARCH METHODOLOGY

What is the adopted research methodology?

DATA COLLECTION

What data sources were used for collecting data?

- Using SmartHomeDB as data source
- SmartHomeDB is an online platform focusing on smart connected home devices

• During the data collection exercise it featured 1193 devices belonging to 87 different device types

DATA COLLECTION

How was the data collected?

• Crawling the entire SmartHomeDB

curl -sL 'http://www.smarthomedb.com/product/amazon-fire-tv-(2nd-gen)/p1565' curl -sL 'http://www.smarthomedb.com/product/ring-video-doorbell/p898' curl -sL 'http://www.smarthomedb.com/product/ring-chime/p1322' curl -sL 'http://www.smarthomedb.com/product/nest-learning-thermostat-(3rd-gen)/p1025' curl -sL 'http://www.smarthomedb.com/product/arlo-2-hd-camera-security-system/p814' curl -sL 'http://www.smarthomedb.com/product/sony-playstation-4-500gb/p1574' curl -sL 'http://www.smarthomedb.com/product/chromecast/p1560' curl -sL 'http://www.smarthomedb.com/product/sonos-play-1-compact-wireless-speaker/p106' curl -sL 'http://www.smarthomedb.com/product/fitbit-aria-wi-fi-smart-scale/p96' curl -sL 'http://www.smarthomedb.com/product/amcrest-prohd/p1221' curl -sL 'http://www.smarthomedb.com/product/nest-cam/p973' curl -sL 'http://www.smarthomedb.com/product/apple-tv-(4th-gen,-32gb)/p1248' curl -sL 'http://www.smarthomedb.com/product/bose-soundlink-color-bluetooth-speaker/p1446' curl -sL 'http://www.smarthomedb.com/product/ring-video-doorbell-pro/p1324' curl -sL 'http://www.smarthomedb.com/product/jam-classic-speaker/p1553' curl -sL 'http://www.smarthomedb.com/product/nest-learning-thermostat-(2nd-gen)/p88' curl -sL 'http://www.smarthomedb.com/product/tp-link-wi-fi-smart-plug/p1118' curl -sL 'http://www.smarthomedb.com/product/tp-link-wi-fi-smart-plug-with-energy-monitoring/p1117' curl -sL 'http://www.smarthomedb.com/product/tp-link-smart-light-switch/p1458' curl -sL 'http://www.smarthomedb.com/product/belkin-wemo-switch/p464' curl -sL 'http://www.smarthomedb.com/product/sonos-play-5-wireless-speaker/p438' curl -sL 'http://www.smarthomedb.com/product/sonos-play-3-wireless-speaker/p436' curl -sL 'http://www.smarthomedb.com/product/amazon-tap-alexa-enabled/p1253' curl -sL 'http://www.smarthomedb.com/product/roku-streaming-stick/p1570' curl -sL 'http://www.smarthomedb.com/product/sonos-playbar/p444' curl -sL 'http://www.smarthomedb.com/product/ecobee3-homekit-enabled-thermostat/p1166' curl -sL 'http://www.smarthomedb.com/product/fujikam-hd-camera/p200' curl -sL 'http://www.smarthomedb.com/product/vimtag-vt-361-cloud-camera/p1411' curl -sL 'http://www.smarthomedb.com/product/vimtag-b-1-outdoor-cloud-camera/p1413' curl -sL 'http://www.smarthomedb.com/product/withings-smart-body-analyzer/p114'

DATA PROCESSING

How was data collected processed?

- Using web mining to extract the features (capabilities) of devices
- Effectively, this involved string searches within the collected HTML file
- Searches were done for a capability set consisting of 12 elements, e.g., wireless protocols, API support, Web browser access, etc.
- The end result of this was a 2D matrix consisting of rows representing actual devices and columns the capabilities of devices

DATA PROCESSING

How was data collected processed?

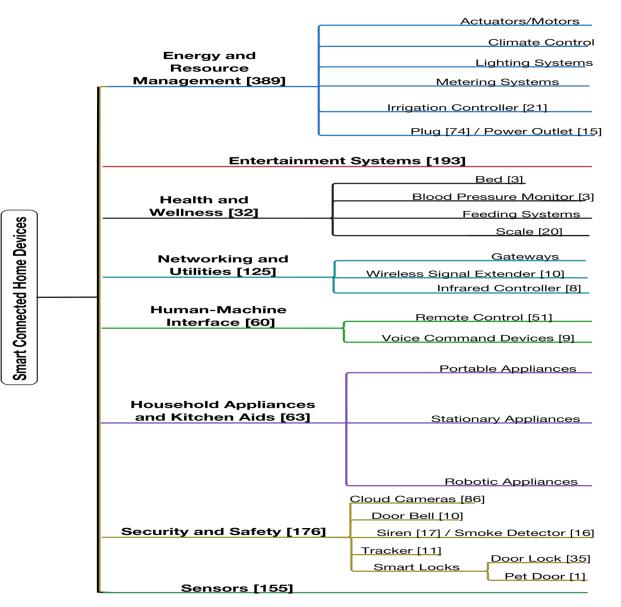
• Capabilities were represented as a binary vector, with 1 indicating that a capability is supported; 0 the contrary

Name	API	Cloud / Serve	Remote Acce	IFTTT	Gateway Fun	Wireless Cha	Wired Proto	Battery Oper	Smartphone	Web-browse
Amazon Fire TV Stie	0	1	0	0	1	1	1	1	1	0
Amazon Fire TV (2n	0	1	0	0	1	1	1	1	1	0
Ring Video Doorbel	0	1	1	1	1	1	0	1	1	0
Ring Chime	0	0	0	0	0	1	0	0	1	0
Nest Learning Ther	1	1	1	1	1	1	0	1	1	0
Arlo 2 HD Camera S	0	1	1	1	1	1	1	1	1	0
Sony PlayStation 4	0	1	0	0	1	1	1	0	1	0
Chromecast	0	1	0	0	1	1	1	0	1	0
SONOS PLAY: 1 Cor	0	0	0	0	1	1	1	0	1	0
Fitbit Aria Wi-Fi Sm	1	1	1	1	1	1	0	1	1	1
Amcrest ProHD	0	1	1	0	1	1	1	0	1	0
Nest Cam	0	1	1	1	1	1	0	0	1	0
Apple TV (4th Gen,	0	1	1	0	1	1	0	0	1	0
Bose SoundLink Co	0	0	0	0	1	1	0	1	0	0
Ring Video Doorbel	0	1	1	1	1	1	0	0	1	0
JAM Classic Speake	0	0	0	0	1	1	0	1	0	0
Nest Learning Ther	1	1	1	1	1	1	0	1	1	0
TP-LINK Wi-Fi Smar	0	1	1	0	1	1	0	0	1	0
TP-LINK Wi-Fi Smar	0	1	1	0	1	1	0	0	1	0
TP-Link Smart Light	0	1	1	0	1	1	0	0	1	0
Belkin WeMo Swite	0	1	1	1	1	1	0	0	1	0
SONOS PLAY: 5 Wir	0	0	0	0	1	1	1	0	1	0
SONOS PLAY: 3 Wir	0	0	0	0	1	1	1	0	1	0
Amazon Tap - Alexa	0	1	1	1	1	1	0	0	1	1
Roku Streaming Sti	0	1	0	0	1	1	1	1	1	0
SONOS PLAYBAR	0	0	0	0	1	1	1	0	1	0
ecobee3 HomeKit-e	0	1	1	1	1	1	0	0	1	1
Fujikam HD Camera	0	1	1	0	1	1	0	0	1	1
Vimtag VT-361 Clou	0	1	1	0	1	1	1	0	1	0
Vimtag B-1 Outdoo	0	1	1	0	1	1	1	0	1	0

DATA ANALYSIS

How was data analysis performed?

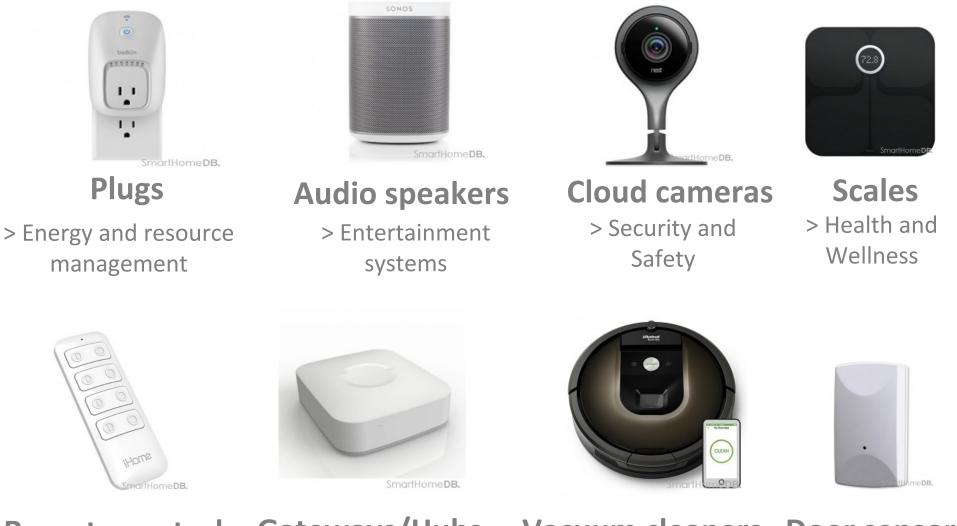
- The CSV was loaded into IBM SPSS for analysis
- First, a clustering variable was manually added (coded) to the dataset, representing the functional area the device is designed to provide
- Second, the actual computation of descriptive statistics on the dataset was performed


SMART HOME FUNCTIONAL AREAS

What are the device functional areas and their distribution?

SMART HOME FUNCTIONAL CLASSIFICATION

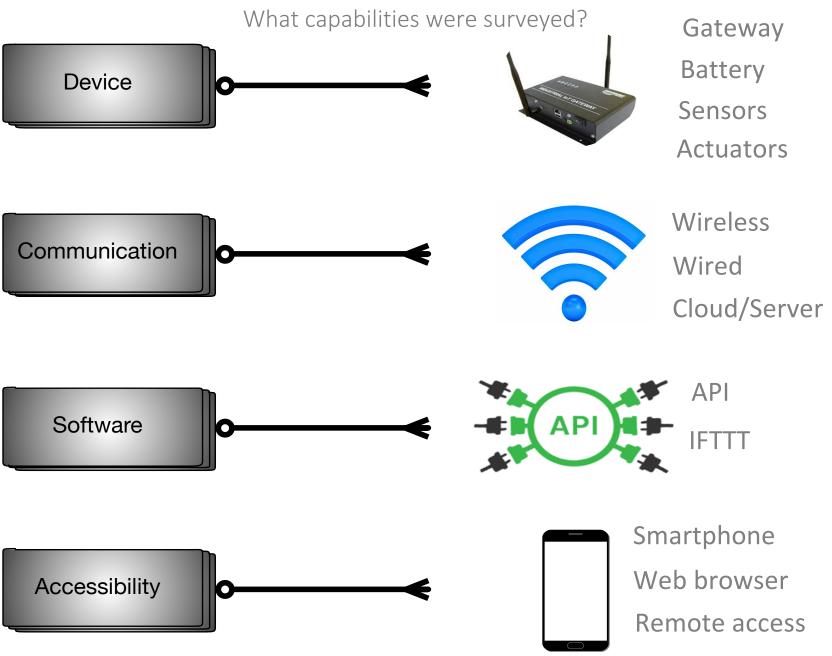
What is the obtained hierarchical taxonomy?



Full taxonomy is available in the paper

SMART HOME FUNCTIONAL AREAS

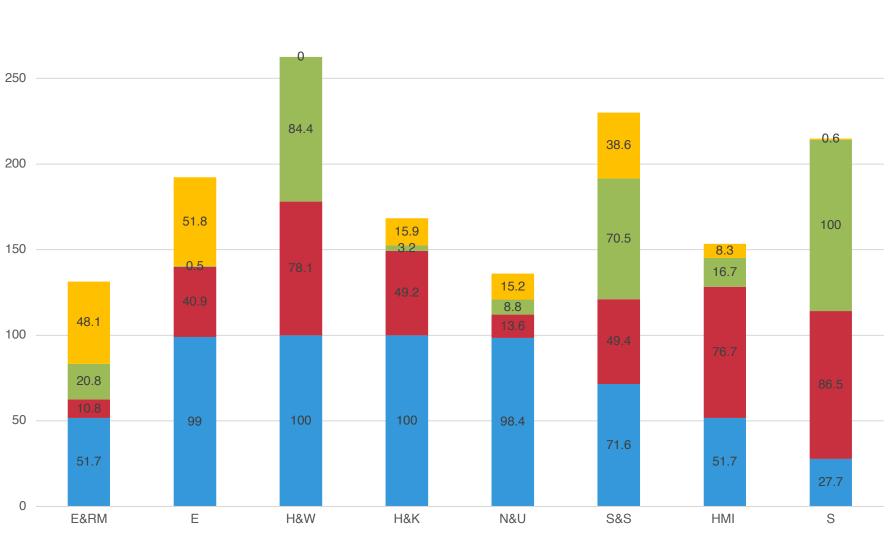
What is the most popular device across each functional area?



Remote controls Gateways/Hubs

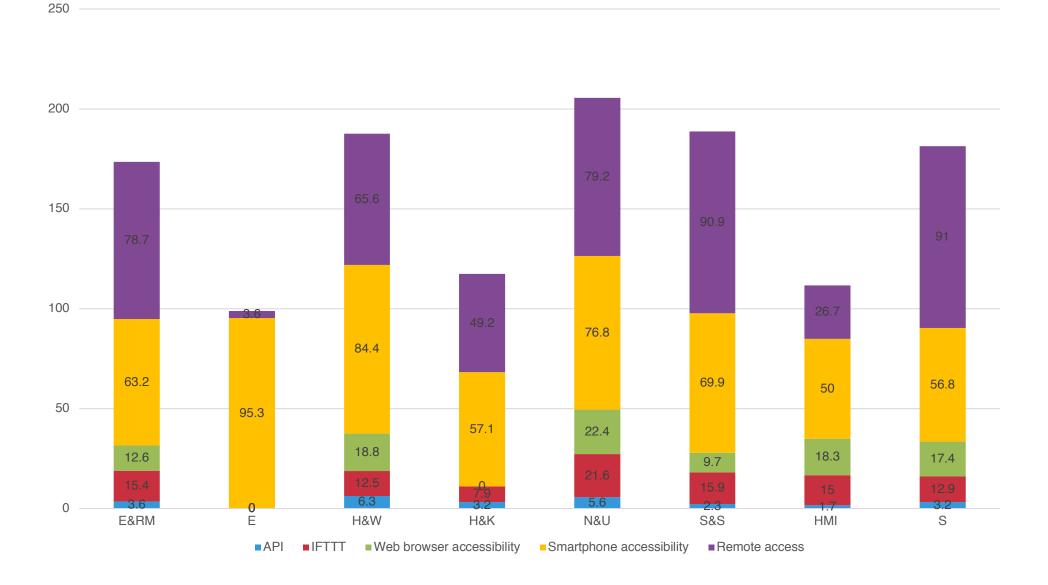
> Human-machine > Networking and utilities interface

Vacuum cleaners > Household appliances and kitchen aids Door sensors > Sensors


SMART HOME DEVICE CAPABILITIES

DEVICE CAPABILITIES

300


What are the core device features?

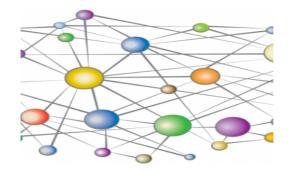
Gateway functionality Battery source Integrated sensors Integrated actuators

OTHER CAPABILITIES

What are the characteristics of some other features that were surveyed?

CLOSING REMARKS

- Proposed a generic classification consisting of 8 functional areas and 12 capabilities
- This was done by mining the technical specification of 1193 commercial devices
- Analyzed the entire spectrum of devices in terms of their capabilities per func. area
- Can be used to bridge the communication between researchers and practitioners and as a basis for generalization and common solutions


FUTURE WORK

What are some possible avenues for future work?

 Identify representative devices

• Show interoperable devices

		PROBABILITY							
	Factors	0.1	0.5	1	3	6			
SES	50	5	25	50	150	300			
ENG	25	2.5	12.5	25	75	150			
n III	15	1.5	7.5	15	45	90			
CONSEQUENCES	5	0.5	2.5	5	15	30			
<u></u>	1	0.1	0.5	1	3	6			

 Conduct quantitative risk assessment

Thank you for your attention!

joseph.bugeja@mau.se

https://www.bugejajoseph.com