JOSEPH BUGEJA ON PRIVACY AND SECURITY IN SMART CONNECTED HOMES

UTER SCIENCE NO

CTORAL

AGENDA

INTRODUCTION AND RESEARCH QUESTIONS

HOME IS WHERE THE HEART IS

- Our home is a deeply meaningful and human place.
- It is a place where our fundamental physical needs are (expected to be) protected.
- The home is the most powerful sign of the self of the inhabitant who dwells within¹.

¹ Csikszentmihalyi & Rochberg-Halton, 1981. The Meaning of Things: Domestic Symbols and the Self.

EVOLUTION OF THE HOME

THE SMART CONNECTED HOME

PRIVACY BREACHES

Amazon Workers Are Listening to What You Tell Alexa

A global team reviews audio clips in an effort to help the voice-activated assistant respond to commands.

SECURITY BREACHES

The Mirai botnet in 2016 used thousands of hijacked IoT devices, including smart home devices, to bring down the DNS provider Dyn

OVERARCHING RESEARCH QUESTION

Internet

How has the nature of privacy and security been transformed as the home got connected to the Internet?

RESEARCH QUESTIONS

- **RQI:** How can smart connected home devices and the data collected by them be categorized?
- **RQ2:** How can smart connected homes be modeled to support threat identification?
- RQ3: How can privacy and security risks affecting smart connected homes be modeled and analyzed?
- **RQ4:** What are the challenges in mitigating privacy and security risks in smart connected homes?

MOTIVATION

CONCEPTS AND RELATED WORK

PRIVACY

- Warren and Brandeis identified privacy as the right to be let alone².
- Westin described privacy as the claim of individuals, groups, or institutions to determine for themselves when, how, and to what extent information about them is communicated to others³.
- Nissenbaum defined privacy as the appropriateness of information flows in defined contexts⁴.

² Samuel D Warren and Louis D Brandeis. *The Right to Privacy*. Harvard Law Review, page 193–220, 1890.

³ Alan F Westin. *Privacy and Freedom*. Atheneum, New York, 1967.

⁴ Helen Nissenbaum. Privacy in Context: Technology, Policy, and the Integrity of Social Life. Stanford University Press, 2009.

SECURITY

- Security is commonly described in terms of its objectives, namely, that of confidentiality, integrity, and availability.
- Other goals are often added to it, including that of privacy.
- Security is vital to ensure the safe development of our digital world.
- The concepts of security and privacy have some overlapping goals but they are not the same.

THREATS AND RISKS

- Threats are potential occurrences that may result in an unwanted outcome.
- Risks are the potential for a threat to cause harm to an asset.
- Risk analysis is the process used to identify risks.
- Risks can be mitigated through mechanisms.

RESEARCH STRATEGIES AND DATA SOURCES

CONSIDERATIONS

- *Ethics*: passive vulnerability scanning, data redaction, authenticated and delayed scraping.
- Reliability and validity: multiple product databases, triangulation of data, sample size.
- Generalizability: Formal models and insights.

CONTRIBUTIONS

STATE-OF-THE-ART DEVICES AND DATA

STATE-OF-THE-ART DEVICES AND DATA

RQ1

How can smart connected home devices and the data collected by them be categorized?

- Contributions -

[CI] Taxonomy and analysis of connected devices

[C2] Classification and analysis of connected devices and their apps

[C3] Analysis and classification of collected data

TAXONOMY AND ANALYSIS

Bugeja, J., Davidsson, P., Jacobsson, A. (2018). Functional Classification and Quantitative Analysis of Smart Connected Home Devices (pp. 1–6). In: Proceedings of the Global IoT Summit (GIoTS 2018). IEEE.

TAXONOMY AND ANALYSIS

Bugeja, J., Davidsson, P., Jacobsson, A. (2018). Functional Classification and Quantitative Analysis of Smart Connected Home Devices (pp. 1–6). In: Proceedings of the Global IoT Summit (GIoTS 2018). IEEE.

CLASSIFICATION OF SYSTEMS

Bugeja, J., Jacobsson, A., Davidsson, P. (2020). Is Your Home Becoming a Spy? A Data-Centered Analysis and Classification of Smart Connected Home Systems. In: *Proceedings of the 10th International Conference on the Internet of Things (IOT 2020)*. ACM.

DATA CATEGORIZATION

Bugeja, J., Jacobsson, A., Davidsson, P. (2018). An Empirical Analysis of Smart Connected Home Data (pp. 134–149). In: Proceedings of the Internet of Things (ICIOT 2018). Lecture Notes in Computer Science, vol 10972. Springer.

THREAT IDENTIFICATION AND ANALYSIS

How can smart connected homes be modeled to support threat identification?

RQ2

- Contributions -

[C4] Privacy-centered system model

[C5] Privacy-centered data lifecycle

PRIVACY-CENTERED SYSTEM MODEL

Bugeja, J., Jacobsson, A., Davidsson, P. (2020). A Privacy-Centered System Model for Smart Connected Homes (pp. 1–4). In: Proceedings of the International Conference on Pervasive Computing and Communications Conference (PerCom Workshops 2020). IEEE.

PRIVACY-CENTERED DATA LIFECYCLE

Information privacy threats	Protection goals	Data gen- eration	Data col- lection	Data pro- cessing	Data dis- closure
Identification	Unlinkability	•	D	•	0
Localization and tracking	Unlinkability	O	Ð	•	0
Profiling	Unlinkability	0	D	D	•
Linkage	Unlinkability	0	D	D	•
Privacy- violating interaction and presenta- tion	Confidentiality	•	0	0	•
Inventory attacks	Detectability	0	•	0	0
Lifecycle transitions	Transparency	0	•	0	0

Bugeja, J., Jacobsson A. (2020). On the Design of a Privacy-Centered Data Lifecycle for Smart Living Spaces (pp. 126-141). In: Friedewald M., Önen M., Lievens E., Krenn S., Fricker S. (eds) Privacy and Identity Management. Data for Better Living: AI and Privacy. Privacy and Identity 2019. IFIP Advances in Information and Communication Technology, vol 576. Springer.

RISK MODELING

How can privacy and security risks affecting smart connected homes be modeled and analyzed?

- Contributions -

[C6] Threat agent model

[C7] Framework for modeling and analyzing privacy risks

VULNERABILITIES IN CONNECTED CAMERAS

	SHODAN			{Threat Agent :: Hacker	-}
	62.		ip	104	
	Property Name	Value	ip_str	62.	High
	area_code	null	isp	Unitymedia	CVE-2007-5213
ional	asn	AS6830	last_update	2018-03-20T19:29:37.676273	
rests	city	Gelsenkirchen	latitude	51.5221	
	country_code	DE	longitude	7.0575	Mediur
rism	country_code3	DEU	org	Unitymedia	CVE-2011-5261
	country_name	Germany	os	null	
	data.0shodan.crawler	264b5a9d15a64f96a4768e9d8081t	ports	[554]	
onal Soin	data.0shodan.id	null	postal_code		Critica
Jaiii	data.0shodan.module	rtsp-tcp	region_code	07	CVE-2015-2887
	data.0.data	RTSP/1.0 200 OK CSeq: 1 Server: Hip	ocam RealServer/V1.0 Public: OP	TIONS, DESCRIBE, SETUP, TEARDOWN, PLAY, SET_PARAMETER, GET_PARAMETER	
sity	data.0.domains	['unitymediagroup.de']			

An Investigation of Vulnerabilities in Smart Connected Cameras (pp. 537–542). In: Proceedings of the International Conference on Pervasive Computing and Communications Conference (PerCom Workshops 2018). IEEE.

PRIVACY RISK ANALYSIS OF SMART HOMES

Bugeja, J., Jacobsson, A., Davidsson, P. (2020). PRASH: A Framework for Privacy Risk Analysis of Smart Homes. Submitted to ACM Digital Threats: Research and Practice (DTRAP).

CHALLENGES AND MITIGATIONS

CHALLENGES AND MITIGATIONS

What are the challenges in mitigating privacy and security risks in smart connected homes?

- Contributions -

[C8] Identification of security challenges and their mitigations

CHALLENGES AND MITIGATIONS

• Mitigations :: Architecture level

• Mitigations :: Development lifecycle

Bugeja, J., Jacobsson A. (2020). On the Design of a Privacy-Centered Data Lifecycle for Smart Living Spaces (pp. 126-141). In: *Friedewald M., Önen M., Lievens E., Krenn S., Fricker S. (eds) Privacy and Identity Management. Data for Better Living: AI and Privacy. Privacy and Identity 2019. IFIP Advances in Information and Communication Technology*, vol 576. Springer.

SUMMARY OF CONTRIBUTIONS

CONCLUSIONS

• Threat agents are finding ways to learn how to tap into the smart connected home and looking for new ways to attack in-home technologies.

PRIVATE

- In the dissertation, we presented contributions that enable early identification of threats, better planning for risks, and enable informed decisions about mitigations of potential impacts.
- The presented contributions provide a foundation that helps deepen the understanding of privacy and security in smart connected homes.

FUTURE WORK

Embedding privacy- and security-enhancing mechanisms into connected devices

Blockchain as a privacyand security-enhancing mechanism AI

Al as a mechanism for automatically responding to threats

Thank you for your attention!

joseph.bugeja@mau.se

Source: mau.se